普朗克与爱因斯坦
当时经典物理学有个很重要的研究对象就是绝对黑体。这个物体在冷的时候不发光,而是吸纳光线和热。在电磁学理论之后,绝对黑体的理论又有了进展。当时人们已经知道热辐射也是电磁波的一种形式。
对高热物体发光变色的研究导致了悖论出现
我们都知道铁加热会变红,当温度高的时候会熔化发出白光或是蓝光,可以看到的光就是它辐射出来电磁波的可见部分。当温度变冷之后不是不辐射,而是我们看不见,相比之下红外摄像机、胶片就能看到很多肉眼看不到的热辐射。那么当一个物体升温进而因为高温发热,会得到这样的推论,随着温度升高、辐射的增强,从红色变成蓝色的时候,应该是所有波段的都增强,但蓝色的短波段会增强更多,进而我们观察到的是蓝色,而不是红色部分。但是这个理论继续推论的话,会发现当温度继续升高后,紫外部分辐射出去的能量会越来越高而接近无线大,这显然与观测是不符合的,事实上是会衰减。
在1900年,普朗克给出了一个理论来解释这个现象,那就是把一个物体想象成为无数个谐振的小的振子的集合,辐射就是这些振子(就是今天我们知道的原子或是分子)的震动,它们的振幅是一定的,而频率可以从0到无穷大。当分割了物体之后,普朗克推导出来一个经验公式,这个公式里面,他首次提出,能量的传递不是人们想象当中的连续传递,而是一份份的传递,每一份是个很小的量,这个量是6.6260693×10-34焦耳·秒,这个量被称之为普朗克常数,每一份普朗克称之为“量子”。并且得到一个著名的方程:
E=nhf
在当时,科学界普遍认为的观点是普朗克得到的结论只是一种“数学技巧”。但是在5年之后的1905年,爱因斯坦用普朗克的理论解 释了光电效应,即一束光的能量也是一份份传输的,并且和频率相关,这个理论有点类似牛顿的光的颗粒说,但是结合了波的频率性质。
至此,能量按照一份一份的传递的量子学说开始深入人心。而普朗克的量子理论、爱因斯坦的光电效应都获得了诺贝尔奖。
本文属于原创文章,如若转载,请注明来源:百年的超越:量子物理学与量子计算机//oa.zol.com.cn/638/6384818.html
推荐经销商